
Kohler JB, Junqueira JJM, Silva TCMD, Filho MAGP, Tibério IDFLC, 
Lopes FDTQS, Barbosa AP. Smoking-Induced Oxidative Stress in 
Bone: The Effects on Bone Turnover. J Orthopedics & Orthopedic Surg. 
2021;2(2):14-23

Review Article Open Access

Page 14 of 23

Smoking-Induced Oxidative Stress in Bone: The Effects on Bone Turnover
Júlia Benini Kohler1, Jader Joel Machado Junqueira1, Taysa Cristiane Moreira da Silva3, Marco Antonio 
Gonçalves Pontes Filho3,4, Iolanda De Fátima L C Tibério1, Fernanda Degobbi T Q S Lopes1, Alexandre 

Póvoa Barbosa1,2*
1Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil

2Department of Orthopaedics, Hospital do Coração - SP Brazil
3Department of Rheumatology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil

4Departments of Orthopaedics and Rheumatology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil

Article Info

Article Notes 
Received: May 14, 2021
Accepted: July 09, 2021

*Correspondence: 
*Dr. Alexandre Póvoa Barbosa, Departments of Orthopaedics 
and Rheumatology, School of Medicine, University of Sao 
Paulo, Sao Paulo, Brazil; Telephone No: 55 11 21652354; 
Email: ortopediabarbosa@gmail.com

©2021 Barbosa AP. This article is distributed under the terms of 
the Creative Commons Attribution 4.0 International License.

Keywords 
Smoking
Bone loss
Bone turnover
Bone matrix
Oxidative stress
Bone fragility

 �

Abstract

Despite of clinical evidence of increased incidence of bone diseases 
amongst smokers as well as worsening recovery in orthopedic surgeries, it is 
still unclear which pathological mechanisms are induced by smoking and how 
these events impair bone turnover.

Animal models and in vitro studies have been used to better elucidate these 
questions and smoking-induced oxidative stress have been pointed as playing 
crucial role in the worsening of bone cells activities leading bone damage.

Oxidative stress is a physiological mechanism characterized by an imbalance 
between oxidants and antioxidants components. This imbalance leads cell 
damage and consequent release of inflammatory mediators, resulting in 
structural changes that impair the functionality of compromised organ.

In this review, we summarize findings from clinical, animal models and 
in vitro studies that have elucidated the importance of the oxidative stress 
induced by smoking in different bone cells activities, leading bone mineral and 
organic matrix structural changes.

Highlights: We present the newest findings in understanding the impact 
of smoking in bone matrix composition. Review the clinical and experimental 
evidence for smoking-induced oxidative stress potential roles in bone turnover. 
Descript future directions for research and clinical management.

Introduction

Smoking effects on bone: Epidemiological evidence
Cigarette smoking is recognized as an important risk factor for 

several diseases, such as chronic obstructive pulmonary disease, 
cancer, heart attack and vascular diseases1-4.

Smoking is associated with increased incidence of fractures5, 
osteoporosis, mainly in women6, and delayed consolidation under 
bone injury conditions7.

In clinical studies, smoking has been associated with decreases 
in bone volume and mineral density (BMD) by the enhancement of 
bone resorption. Moreover, these effects depend on the duration of 
smoking and body weight6,8,9.

As the volume of exposure to cigarettes increase (expressed by 
cigarettes per day or pack-years) higher will be the decline in BMD 
at multiple skeletal sites and bone mass10.

The impacts of smoking on bone may differ between men and 
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women. Since there are few studies describing these 
differences, there was no consensus about the physiological 
mechanisms that leads these different responses6.

The deleterious effect of smoking has been mostly 
demonstrated in women with low levels of estrogen, 
and in these women it was observed a reduction in the 
response of hormonal replacement therapy11,12. The United 
States Department of Health and Human Services showed 
that smoking causes a decrease in BMD in menopausal 
women13, and this effect is progressive over the years in 
smokers compared with nonsmokers14.

Although it is well established the importance of 
second-hand smoking in the progression of many diseases 
and health conditions, including cancer15, cardiovascular 
diseases16 and respiratory diseases17; little is known about 
the influence of passive smoking on bone metabolism. Only 
a few studies have investigated how passive smoking could 
induce negative effects on bone mass and fracture risk18-

21. In contrast, extensive data from epidemiological and 
experimental studies indicate that gene–environmental 
interaction during pregnancy and early life leads permanent 
changes in physiological homeostasis, increasing many 
diseases predisposition by epigenetic mechanisms22. 
Exposure to tobacco smoke, at the early events during 
pregnancy and childhood, could promote deleterious 
effects on the development process and may result in 
permanent damage23-27.

Despite the evidence supporting the deleterious effects of 
smoking on bone health in both genders, it is still unclear how 
smoking impairs bone turnover and reduces bone mass28,29.

Tobacco smoke contains  gaseous and particular 
compounds that induce free radical release which may lead 
to chronic airway inflammation and tissue destruction30-32. 
Evidence from studies in dental surgeries have strongly 
attributed the deleterious effects of smoking as result of an 
increase in oxidative stress mechanism33,34.

In  trauma surgeries, it has been showed that the 
reactive organic radicals contained in cigarette smoke 
induce delayed healing of fractures as well as high risk 
of nonunion after fracture through cell toxicity and 
inflammatory process induction35,36,37.

Oxidative stress is a physiological mechanism 
characterized by an imbalance between oxidants and 
antioxidants components. This imbalance leads cell damage 
and consequent release of inflammatory mediators, 
resulting in structural changes that impair the functionality of 
compromised organ33.

 In this review we summarize some results from clinical, 
animal models and in vitro studies (Figure 2). that have 
highlighted the importance of the oxidative stress induced 
by smoking in the worsening of bone turnover, focusing in 
bone mineral and organic matrix structural changes.

Increased Reactive Oxygen Species production: 
Oxidative Stress

Oxidative stress is a physiological mechanism 
characterized by an imbalance between oxidants and 
antioxidants components. This imbalance leads to 
cell damage and consequent release of inflammatory 
mediators, resulting in structural changes that impair the 
functionality of compromised organ (Figure 1)38.

Enzymatic reactions such as those involved in 
respiratory chain, cytochrome P450 system, phagocytosis, 
and prostaglandin synthesis are recognized by oxidants 
generation39-41. Reactive oxygen species (ROS) are oxygen-
containing molecules and free radicals components 
recognized by their oxidant activity. Among them, Hydroxyl 
(OH –), superoxide radicals (O2 –), hydrogen peroxide 
(H2O2), singlet oxygen, and lipid peroxides are the most 
described. They are composed by one or more unpaired 
electrons, which makes them highly reactive since they 
find out another electron to fill their orbital and stabilize 
their electron balance. These metabolites show little half-
life and are difficult to measure in biological samples from 
humans, but it is possible to measure their deleterious 
effects in proteins, lipids, and DNA38.

O2- is mainly produced during cellular respiration 
by mitochondria, also by action of lipoxygenases (LOX) 
and cyclooxygenases (COX) during the arachidonic acid 
metabolism and by endothelial and inflammatory cells6. 
Once formed, O2- will be involved in several reactions that 
could generate hydroxyl (OH –), hydrogen peroxide (H2O2) 
and peroxynitrite (ONOO−). Hydroxyl radical (OH•) is the 
most reactive among all the free radical species and is 
delivered by Fenton reaction:  O2 •− with H2O2, with Fe2+ 
or Cu+ as a reaction catalyst42-44. Nitric oxide radical (NO)is 
synthesized from arginine-to-citrulline oxidation by nitric 
oxide synthase (NOS)42-44.

In addition to endogenous sources, ROS could 
be generated from exogenous sources. Exposure to 
environmental pollutants, heavy metals, chemical solvents, 
cigarette smoke and others that must be degraded or 
metabolized could induce the production of free radicals45. 
The maintenance of the exposure to these sources leads 
the development and progression of different diseases 
such cancer, chronic obstructive pulmonary diseases, 
osteoporosis38.

When there was an imbalance between ROS formation 
and the capability of cells to remove them, the oxidative 
stress mechanism will occur, affecting cellular structures, 
such as membranes, proteins, lipids and desoxyribonucleic 
acid (DNA)46. An excess of hydroxyl radical and peroxynitrite 
culminates in lipid peroxidation which damages cell 
membranes and lipoproteins. In proteins, oxidative 
stress changes their chemical structures which worsens 
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their enzymatic activity. In DNA, the damages induced by 
oxidative stress leads mutagenesis and also compromises 
the epigenetic formations38.

 To avoid the effects of oxidative stress, cells establish a 
defensive system based mainly on the production enzymas 
with antioxidant actions, such as superoxide dismutase 
(SOD), catalase (CAT), and glutathione peroxidase (GPx)47.

However, during extensive exposure to exogenous 
factors such as cigarette smoke, the cells antioxidant 
capacity is insufficient to avoid the oxidative stress 
occurrence. Evidence have been attesting that smoking is 
associated with increase in ROS production since smokers 
have lower antioxidant enzyme levels and it impacts in 
bone resorption and bone mass loss29.

Figure 1: Oxidative stress is a physiological mechanism that depends on the exogenous and endogenous factors which could lead to an 
increase of free radicals. These metabolites induce damages of cell membranes and lipoproteins, compromising cells activity. In bone, 
the increase of ROS leads to an increase in osteocytes and osteoblasts apoptosis as well as a decrease in osteoblasts differentiation. 
Moreover, the increase in RANK/RANKL activation induces osteoclastogenesis and a sequent bone resorption. These events culminate 
in changes in organic and mineral matrix, compromising the bone integrity. (ROS: Reactive Oxygen Species; RANK: Receptor Activator of 
Nuclear Factor κ B; RANKL: Receptor Activator of Nuclear Factor kB ligand; MSCs Mesenchymal stromal cells)
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The smoking-induced oxidative stress effects in 
bone turn over

Oxidative stress effects in bone mineral matrix

Inorganic and organic components are present in 
bone matrix. Although the inorganic constituent of bone 
matrix is mainly composed by crystalline hydroxyapatite-
[Ca3(PO4)2]3 Ca(OH)2, the organic component contains 
around 20 proteins, and the type I collagen is the most 
prevalent48. During the bone resorption, the dissolution of 
crystalline hydroxyapatite occurs earlier than the injury of 
the organic components49.

Since bone formation requires the recruitment, 

proliferation and osteogenic differentiation of 
mesenchymal progenitors cells, the balance between cell 
activation, cellular activity and cell life span can produce 
an effect in bone tissue formation and bone density.

The osteocytes, cells in close contact with blood 
capillaries are considered the major regulators of bone 
remodeling. The increase in oxidative stress leads to these 
cells apoptosis which are related to altered bone formation 
and lower mineral density50,51. Also, osteocyte apoptosis is 
associated with the increased expression of osteoclastogenic 
factors and elevation in bone turnover, resulting in bone 
mass loss52. Moreover, the presence of ROS damages stem 
cells self-renewal activation and differentiation towards 

 
Figure 2: The effects of the CS-induced oxidative stress showed in experimental and clinical studies in bone mineral (A) and organic (B) 
matrix. (ROS: Reactive Oxygen Species; RANKL: Receptor Activator of Nuclear Factor kB ligand)
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tissure-specific lineages like osteoblasts and osteocytes53. 
Bone turnover is mainly performed by the osteoclasts and 
osteoblasts. The activation and proliferation of these cells 
are regulated by different factors, such as the RANK–RANKL–
OPG system, growth factors, cytokines and hormones54. 
Osteoclasts are large multinuclear cells and are the only 
cells capable of resorbing the mineralized bone matrix55. 
The osteoclasts are derived from hematopoietic stem cells 
(HSCs), which differentiate into bone-resorbing osteoclasts 
through a series of steps leading to matrix disruption56. 
The maturation of HSCs into osteoclasts is driven forward 
by several crucial steps and is highly dependent on the 
presence of Receptor Activator for Nuclear Factor κ B 
(RANK), the cytokine macrophage stimulating factor 
(MCS-F) as well as the regulator osteoprotegerin (OPG)57.

Osteoblasts are cells derived from mesenchymal 
progenitors in the bone marrow. They are accumulated 
in larger groups producing  the extracellular matrix 
components, which is initially unmineralized58.

The bone turnover is a complex process and the 
effectiveness of signaling pathway OPG/RANK/RANKL 
prevents the bone loss59. RANKL is expressed by osteoblasts, 
osteocytes and other mesenchymal lineage cells60. RANKL 
by binding to its receptor RANK expressed by osteoclasts 
induces this cell type differentiation and activation. OPG is 
a circulating receptor that binds to RANKL, inhibiting the 
osteoclastogenesis, and are present in bone and  vascular 
endothelial cells61,62.

The deficiency of RANKL was described associated with 
severe osteoporosis in mice and decreased  osteoclasts 
activity in in vitro studies63,64. In smokers, the imbalance 
of OPG/RANK/RANKL signaling pathways was described 
associated  with decreased bone mineral density (BMD) 
and higher susceptibility to bone fractures65,66 and some 
studies have attributed these effects to an increase in 
reactive oxygen species.

The RANK activation by RANKL induces an increase in 
reactive oxygen species (ROS) release67,68, and the excessive 
activity of osteoclasts has been described in bone diseases 
such as osteoporosis67,69,70.

In a periodontitis mice model, Kubota et al.71 
demonstrated that the systemic administration of cigarette 
smoke condensate or nicotine accelerated the alveolar bone 
destruction through an increased expression of RANKL by 
osteoclasts.

In this context, Kim et al.70 showed in experimental 
and in vitro studies that an antioxidant protein capable of 
destroying ROS72-79, negatively regulated RANKL stimulated 
signals and reduced the osteoclastogenesis in bone, under 
normal and injury conditions.

Corroborating with these data, some findings have 

attested the antioxidant effects by using a resveratrol and 
resveratrol-like compounds, resulting in downregulation 
in osteoclastogenesis and osteoclast activity in periodontal 
diseases, revealing this therapeutic approach as promissor 
in improving the bone healing processes even under 
smoking conditions80,81.

Also, increased levels of oxidants, such as isoprostane 
(iso-PGF2α) in urine and plasma samples have been 
demonstrated in association with reduced bone mineral 
density82,83. These results highlighted possible markers 
to monitor the increased oxidative stress occurrence 
associated with reduced bone mineral density as well the 
possibility of treatments with antioxidants to control the 
osteoporosis progression.

Oxidative stress effects in bone organic matrix

The organic components of bone tissue include collagen 
fiber types I and V, proteoglycans, growth factors and 
cytokines. Type I collagen represents approximately 90% 
of the total collagen forming the protein scaffold upon 
which mineral is deposited84. The pattern of collagen 
fibers distribution in mature bone is characterized by 
dense parallel layers that alternate between parallel and 
orthogonal distribution85-87.

Type I collagen are not only the most abundant 
component in organic matrix, but also contributes to 
tissue organization due its mechanical properties and 
fibril distribution, that it is essential for mineralization 
process86,87. In this context, the damage of type I collagen 
synthesis has dramatic effects on the skeleton88.

Sasaki et al. demonstrate that long-term CS exposure 
in mice impairs the normal growth of lumbar vertebral 
bodies and deteriorates vertebral bone quality, and these 
results were attributed mainly to disorientation of  newly 
total collagen fibers that were replaced during remodeling 
process after the  CS-induced injury in bone tissue89.

Other important collagen subtype in bone turnover is 
the collagen type V. Although, it counts for < 3% of total 
collagen, this is a regulatory fibril-forming collagen since 
regulates the fibrillogenesis of the collagen types I and III. 
In a previous study, we showed in mice, that cigarette smoke 
exposure alters bone matrix composition and impairs bone 
mineralization resulting in bone fragility. It occurs due to 
increased production and deposition of collagen V with a 
concomitant decrease of collagen type I84.

The organic components of bone matrix are mainly 
produced by the osteoblasts and these cells activity could 
be compromised by excessive oxidative stress. Thus, 
oxidative stress has been recognized as important factor 
to impair bone formation in postmenopausal and senile 
osteoporosis90,91.
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Zhang et al.92 showed in transgenic mice that deficiency 
in FoxO1, a protein that modulate the expression of 
genes involved in cell differentiation, DNA damage repair, 
and oxidative stress, induced a decrease in osteoblasts 
differentiation and an increase in caspase-3 activity, 
resulting in these cells apoptosis. Authors demonstrated 
that FoxO1 provides a favorable intracellular environment 
for osteoblast functions by defensing against the adverse 
effects of oxidative stress.

To better elucidate the CS-induced effects in osteoblasts, 
the most used approach is to test the different levels of 
nicotine in in vitro studies. The increase in oxidative stress 
induced by nicotine has been demonstrated in osteoblasts, 
worsening this cell function6. Moreover, these effects seem 
to be dose-dependent, at high concentrations of nicotine, 
osteoblast-like cells demonstrate decreased proliferation 
and impaired collagen synthesis93, whereas at low levels 
these cells are stimulated34.

It is important to note that different ways of nicotine 
administration could interfere in its systemic absorption, 
altering bone turnover impact. The inhalation of nicotine 
induces higher levels of this substance compared with 
subcutaneously administration. Thus, clinical studies 
have been showed that the interruption of smoking habit 
before the elective surgeries diminishes the time required 
for bone healing as well the complications after surgery94. 
Lower levels of nicotine and cotinine, that is a compound 
of nicotine, are detected in serum  and urine of patients 
after smoking cessation95. Probably, part of these benefits 
could be attributed to the decreased systemic levels of 
nicotine and a consequent oxidative stress reduction after 
a smoking cessation.

Clinical aspects of smoking and bone health
Osteoporosis is characterized by low BMD and 

weakening of bone tissue, which leads to gradual bone 
fragility and can causes fractures. Among all the treatable 
causes of osteoporosis, smoking has been established as 
an important contributing risk factor. It affects the balance 
of the naturally occurring processes of bone resorption 
and bone formation, resulting in low BMD as the amount 
resorbed is not totally replaced29.

Few studies are available regarding the 
pathophysiological mechanisms by which smoking would 
lead to bone loss and the assessment of the clinical 
association of them. Smoking is thought to cause low bone 
density through numerous pathways.

Among the currently available studies, there is the fact 
that, in general, smokers have lower weight and body mass 
index (BMI), which is postulated to provide an osteogenic 
stimulus and it is linked to higher BMD6,29. They also 
found lower serum levels of vitamin D in smokers, which 
is required for good bone health. Furthermore, there is 

an impaired intestinal calcium absorption associated 
with changes in the metabolism of calciotropic hormones. 
Smoking has been linked to changes in hormone 
household, leading to a decrease in parathyroid hormone 
(i.e., responsible for the reducing calcium absorption) and 
low estrogen levels, as well as to a state of hypercortisolism 
and high levels of adrenal androgens6,8,29,96. Those changes 
have been linked to an increased risk of osteoporosis. It 
is imperative to reassure  that woman who smoke have 
alterations in the metabolism of sex hormones leading 
to a lower level of estradiol and menopause at an earlier 
age when compared to non-smokers96. When men are 
evaluated, the studies are conflicting, but some have shown 
inhibition of aromatase (similar to that found in women) 
and, consequently, reduced production of estradiol from 
testosterone. In addition, there is a negative impact on the 
angiogenesis required for bone metabolism29.

Smokers are more likely to suffer from peripheral 
vascular disease, reducing the bone blood supply. As 
smokers are weaker with less lean mass, they have poorer 
balance and impaired neuromuscular performance, which 
may also increase the risk of falls29.

Few studies are available regarding the effect of 
smoking cessation on bone health. One study found an 
intermediate risk of fracture in ex-smokers. And another 
one discovered that the effect of smoking on bone density 
was reversible, and the bone density of ex-smokers 
improved in less than 10 years (i.e., may be partially 
reversible), and there is a dose-response relationship 
for the amount in pack-years smoked and fracture risk. 
Remarkably, other studies reported that the effects of 
smoking cessation in postmenopausal women produced 
improvement in gonadal hormones, level of bone 
formation, and resorption markers and improvement in 
the bone density after cessation/reduction29,97,98.

Another two studies reported that subjects exposed 
to secondhand smoke had significantly lower phalangeal 
BMD and higher risk for femoral neck osteoporosis than 
unexposed subjects29,97,98.

OS is generated as a result of insufficient activity of the 
endogenous antioxidant defense system against reactive 
oxygen species (ROS)99. The results have been further 
shown by cross-sectional and case-control studies, in which 
OS was characterized by a high level of F2-isoprostanes in 
urine and a low level of antioxidant enzymes in blood, along 
with a reduced bone mineral density and an increased risk 
of osteoporosis100,101. Studies suggested that homocysteine 
(Hcy) played an important role in bone metabolism and 
had been involved in osteoporotic facture incidence102-104. 
The results of a meta-analysis showed increased Hcy and 
nitric oxide (NO) in the postmenopausal osteoporosis 
(PO) subjects, while it showed decreased levels of folate 
and total antioxidant power (TAP), along with lower 
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activity of superoxide dismutase (SOD) and glutathione 
peroxidase (GPx) in these subjects. The imbalance of ROS 
and antioxidant system may contribute to functional and 
structural remodeling that favors the occurrence of PO99.

Final considerations and new directions
Despite of clinical evidence of increased incidence of 

bone diseases amongst smokers as well as worsening 
recovery in orthopedic surgeries, it is still unclear which 
pathological mechanisms are induced by CS and how these 
events impair bone turnover.

To describe these pathological mechanisms, animal 
models and in vitro studies have been performed to describe 
different bone cells activities and signaling pathways 
regulating cells interactions. Part of these findings pointed 
out the CS-induced oxidative stress importance in the 
impairment of bone turnover resulting in damage of 
mineral and organic bone matrix which corroborate with 
clinical studies that have extensively showed lower BMD 
and increased bone fragility in smokers.

Although it is difficult to perform measurement of ROS 
due to its short half-life, there are some clinical studies 
that showed increased levels of F2 isoprostanes as well as 
8-isoprostanes in urine samples form smokers compared 
with non-smokers105 and in patients with osteoporosis, 
revealing the oxidative stress occurrence. However, until 
now, the majority of experimental and clinical studies have 
evaluated levels of vitamins, or antioxidant enzymes, which 
are informative; but they only reflect one side of the redox 
homeostasis, leaving the question of whether decreased 
levels are actually indicative of increased oxidative 
stress occurrence99. In this context, the administration 
of antioxidant compounds showed a reduction in ROS 
production in experimental studies and beneficial results 
in smokers with periodontal diseases, revealing this 
therapeutic approach as promisor to ameliorate bone 
healing even under smoking conditions.

Clinical management are still mainly based in 
radiographic images. X-Rays and CT-Scans reveal only the 
final result of bone structural changes. It is not possible 
to investigate the different cell types and not even the 
components of bone matrix separately. Moreover, the 
majority of these exams detect structural changes only after 
the establishment of bone diseases that are worsening by 
smoking.

The association between radiographic images and 
specific biomarkers in serum could be useful to facilitate 
the clinical management. These measurements could be 
performed in tissue as well in serum or urine samples 
to evaluate the impact of smoking cessation in the 
diminishment of oxidative stress markers and how it 
impacts bone turnover, revealing the best moment for 
elective orthopedic surgeries. Also, it will be useful to 

evaluate the efficacy of different treatments, such as 
antioxidants, in different bone diseases that are worsening 
by smoking.
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